MULTI-GRID GENETIC ALGORITHMS FOR OPTIMAL RADIATION SHIELD DESIGN

Stephen Asbury

PhD Defense
December 21, 2011

Overview

- The objectives
- A shield-based introduction to GA and MGGA
- Designing a shadow shield
- Designing a gamma shield
- Designing a bowtie filter
- Conclusions

The Objectives

1. Determine if GA can be used to help find innovative shield designs
2. Determine if MGGA works, and if it can save computing resources compared to GA

Consider a Shielding Problem You Want to Explore

Start with a Bunch of Random Candidate Shields

Call this a generation

Encode Each Shield into a Manageable Form

101111101

Call this encoded version a chromosome

Apply a Fitness Function

The fitness function captures your idea of what it means to be a good shield.

Pick A Shield via a Tournament

- Randomly pick several shields (4)
- Usually pick the best (75\%), sometimes pick the worst (25\%)

Maybe - copy (10\%)

Take a tournament winner

Maybe - mutate (20\%)

Take a tournament winner

Change it

Put it in the next generation

Put it in the next generation

Maybe - combine 2 shields using crossover (70\%)

Take a tournament winner

And another tournament winner

Combine them using crossover to create two new individuals, put them in the next generation

Iterate

1 Initial Population
$\downarrow 11000011 \quad 1010$
2 Current Generation 3 Select and Reproduce 1100
4 New Population
Keep iterating until your termination condition is met

Why Does GA Work

- Chromosomes encode useful building blocks
- Crossover combines building blocks
- Mutation adds diversity to avoid local maxima
- The fitness function ranks individuals for selection

Best Fitness

Average Fitness

GA for Expensive Problems

- Fitness function calls can be distributed on a cluster
- Genetik leverages the UM cluster to scavenge resources within existing constraints
- MGGA is a new meta-algorithm for GA that uses recursive refinement of the problem space to generate building blocks more efficiently saving fitness function evaluations

Multi-Grid Genetic Algorithms

- Break the problem into phases based on geometric scaling
- Run GA on at each phase
- Translate individuals between phases

Rough Grid

Coarse Grid

Fine Grid

Why does MGGA Work

- Complex building blocks and parts of complex building blocks from later phases can be created in earlier phases where they are less complex

Best Fitness

Average Fitness

- Very large problem spaces, from later phases, are seeded with better than random individuals from the start

How do we shield a nuclear spacecraft?

Designing A Shadow Shield

- Alpay and Holloway have discovered that the obvious shield isn't the best shield (2005)
- Splitting a shield helps, could there be an even more interesting result?
© Can MGGA help find an unexpected shield?

Obvious Shield

Improved Shield

Shadow Shield Geometry

Shield area
Cone of visibility

Source

Example
shield
made of equal
mass rings

Two Fitness Functions

Max Flux

ByLocation

$F(s)=\left\{\begin{array}{ll}\min _{i}\left(1-\frac{\phi_{i}}{\phi_{i}(S)}\right) & \text { if } \max _{k}\left(\phi_{k}(S)\right)<\phi_{i}(s) \text { for any } i \\ 1-\frac{m(s)}{m(S)} & \text { otherwise. }\end{array} F(s)= \begin{cases}\min _{i}\left(1-\frac{\phi_{i}}{\phi_{i}(S)}\right) & \text { if } \phi_{i}(S)<\phi_{i}(s) \text { for any } i \\ 1-\frac{m(s)}{m(S)} & \text { otherwise. }\end{cases}\right.$

Beat the full (heaviest) shield at its worst detector

Results for "Max Flux"

GA
MGGA

- Fitness $=.75$
- Cells $=64$
- Passed max flux
- Scored on mass
- 16×16 grid
- Tested at most 10,620 shields
- Fitness $=.96$
- Cells = 10
- Passed max flux
- Scored on mass
- $2 \times 2 \rightarrow 4 \times 4 \rightarrow$ $8 \times 8 \rightarrow 16 \times 16$ grid
- Tested at most 10,600 shields

1.16×10^{77} Possible Shields

Results for "Max Flux" 32×32

GA

MGGA

© Fitness $=.5$
- Cells = 509
- Passed max flux
- Scored on mass
- Tested at most 15,000 shields

16×16 vs. 32×32

Results for ByLocation

GA
MGGA

. Fitness $=.45$

- Cells = 140
- Passed flux by location test
- Scored on mass
- Tested at most 10,620 shields
- Fitness $=.81$
- Cells = 47
- Passed flux by location test
- Scored on mass
- Tested at most 10,600 shields
 1.16×10^{77} Possible Shields

Non-Equal Mass Rings GA

- Fitness = 0.572
- Passed flux test
- Scored on mass
- Tested at most 10,620 shields
-MGGA opened up interesting scatter paths
1.16×10^{77} Possibles

How do we shield radiation workers and first responders?

Designing A Gamma Shield

- McCaffrey, et.al. showed that low-Z/ high-Z layering can beat an equal mass lead shield (2009)
- Can MGGA organize layers to take advantage of atomic physics?

$$
F(s)= \begin{cases}1-(D(s) \times 1000) & \text { if } m(s)<m(S) \\ -\frac{m(s)}{m(S)} & \text { otherwise }\end{cases}
$$

Low Energy Setup

- Consider a shield of width T separated into layers
- Place a mono-energetic gamma source on one side
- Place water on the other side, and tally the dose at various depths

Slab Geometry Results

- $<20,000$ shields - GA
- $<17,500$ shields - MGGA
- 16 layers for GA
- 4,8 and 16 layers for MGGA
- 3.32×10^{13} possible shields

GA 50kev

Energy	Fitness	Reduction \%	Algorithm
50 kev	0.99996	79.69	GA
50 Kev	0.99994	67.7	MGGA
75 Kev	0.99905	83.54	GA
75 Kev	0.99908	84.09	MGGA
100 kev	0.9973	31.02	GA
100 kev	0.9967	15.57	MGGA
150 kev	0.9796	1.313	GA
150 kev	0.9793	0.158	MGGA
200 kev	0.9459	1.319	GA
200 kev	0.9453	0.203	MGGA

sfe	so	\$6	Sn	Sn	Sn	\$	So	*	.	.	\$	Sn	.	Sn	Bi	Bi
SRC	.	.	.	w	w	w	Sn	.	.	Sn	..	.	\$	Fb	.	.

MGGA 75kev

Why isn't MGGA Winning?

- There aren't a lot of complex building blocks to carry through phases
- Later phases get locked into locally good solutions

MGGA

The ORNL Phantom

- Consider a realistic human phantom
- Wrap the torso, head and groin with a shield
- Calculate a total body dose (minus the legs)
- Can a layered shield beat a lead shield of equal mass?

$$
F(s)= \begin{cases}1-D(s) & \text { if } m(s)<m(S) \\ -\frac{m(s)}{m(S)} & \text { otherwise }\end{cases}
$$

Results on the ORNL Phantom

- 16 layers for GA
- 4, 8, 16 layers for MGGA
- MGGA tested 22,500 shields
- GA tested 20,000 shields

Energy	Reduction \%	Algorithm
50 Kev	11.368	MGGA
50 Kev	10.98	GA
75 Kev	66.89	MGGA
75 kev	65.4	GA
100 Kev	27.62	MGGA
100 kev	22.65	GA

MGGA 75kev

2.65×10^{30} Possible Shields

Can We Shape Fluence?

Designing A Bow-Tie Filter

- Filters are often used to shape radiation (Mail 2009)
- Can MGGA shape the profile of scattered to total flux on a target plane?

$$
F(s)= \begin{cases}1-1000 \times \text { count of zero tallies } & \text { if any tallies are zero } \\ 1-\frac{1}{N} \sum_{i=0}^{N}\left(\frac{\phi_{s}(i)}{\phi_{t}(i)}-\left\langle\frac{\phi_{s}}{\phi_{t}}\right\rangle\right)^{2} & \text { otherwise }\end{cases}
$$

Results With Aluminum

Detector Radius

Scatter
Total

 \begin{tabular}{l|l|l|llllllllllllll}
\hline Al \& Al

\hline

Al \& Al

\hline

Al \& \& Al
\end{tabular} Al

 | Al | Al | Al | Al | Al | Al | Al | Al | Al | Al | Al | Al | Al | Al |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 \begin{tabular}{cc|c|c|c|c|c|c|c|c|c|c|c|c}
Al \& Al

Al \& Al

\hline

Al \& Al

\hline
\end{tabular}

	Al													
	Al													

 $\begin{array}{clllllllllllllllllll}\text { Al } & \text { Al }\end{array}$

 \begin{tabular}{lllllllllllllllll}
Al \& Al

\hline

Al \& Al

\hline
\end{tabular}

 $\begin{array}{lllllllllllllllll}\text { Al } & \text { Al } & & \text { Al } & \text { Al }\end{array}$

 Al | | Al |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 | Al |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

	Al										
Al	Al										

Results at 120kev

GA

Al	Ti	Al	Ti	Ti	Ti	Ti			Al	Al			Ti	Ti			Ti	Ti			Al	Al			Ti	Ti	Ti	Ti	Al
Ti	Al																												

Fitness $=0.996$

- 22,500 tested
- 16×16 grid

1.4×10^{122} Possible Shields

MGGA

- Fitness $=0.997$
- 22,500 tested
- $4 \times 4,8 \times 8,16 \times 16$ grid

Future Work

- Look into different ways to tune MGGA
- Selection during phase translations
- Adding diversity during translations
- Using different GA parameters at each phase (tournament selection, mutation rate)
- Investigate using physical error in fitness functions
- Simulate larger, more realistic geometries, using more computing resources

Summary

- MGGA beat GA on fitness in most cases
- MGGA beat GA on time in all cases
- MGGA provided interesting design paths
- Detailed neutron scattering paths
- Lightweight, layered gamma shield
- Manufacturable multi-element bow-tie filter
- MGGA provides a powerful investigative design tool

Thank You

*This work was supported in part by DTRA grant number HDTRA1-08-1-0043

Backup Slides

Why LiH?

- Lightweight
- Hydrogen slows fast neutrons
- Li helps absorb slow neutrons
- Minimal gamma
- Common choice in the literature

High Z - Low Z
 50 kev

Tally (MeV/g)

100 Kev

Ti-Al Cross sections

