MULTI-GRID GENETIC ALGORITHMS FOR OPTIMAL RADIATION SHIELD DESIGN

Stephen Asbury

PhD Defense December 21, 2011

Overview

The objectives
A shield-based introduction to GA and MGGA
Designing a shadow shield
Designing a gamma shield
Designing a bowtie filter
Conclusions

The Objectives

 Determine if GA can be used to help find innovative shield designs

2. Determine if MGGA works, and if it can save computing resources compared to GA

Consider a Shielding Problem You Want to Explore

Start with a Bunch of Random Candidate Shields

Call this a generation

Encode Each Shield into a Manageable Form

101111101

Call this encoded version a chromosome

Apply a Fitness Function

The fitness function captures your idea of what it means to be a good shield.

Pick A Shield via a Tournament

Randomly pick several shields (4)
Usually pick the best (75%), sometimes pick the worst (25%)

Maybe - copy (10%)

Take a tournament winner Put it in the next generation

Maybe – mutate (20%)

Combine them using crossover to create two new individuals, put them in the next generation

Iterate

Why Does GA Work

- Chromosomes encode useful building blocks
- Crossover combines
 building blocks
- Mutation adds diversity to avoid local maxima
- The fitness function ranks individuals for selection

Best Fitness

Average Fitness

GA for Expensive Problems

Fitness function calls can be distributed on a cluster

Genetik leverages the UM cluster to scavenge resources within existing constraints

MGGA is a new meta-algorithm for GA that uses recursive refinement of the problem space to generate building blocks more efficiently – saving fitness function evaluations

Multi-Grid Genetic Algorithms

Break the problem into phases based on geometric scaling

Run GA on at each phase

Translate individuals between phases

Why does MGGA Work

Complex building blocks and parts of complex building blocks from later phases can be created in earlier phases where they are less complex

 Very large problem spaces, from later phases, are seeded with better than random individuals from the start

Best Fitness

Average Fitness

How do we shield a nuclear spacecraft?

Designing A Shadow Shield

Alpay and Holloway have discovered that the obvious shield isn't the best shield (2005)

Splitting a shield helps, could there be an even more interesting result?

© Can MGGA help find an unexpected shield?

Two Fitness Functions

Max Flux

ByLocation

 $F(s) = \begin{cases} \min_i \left(1 - \frac{\phi_i}{\phi_i(S)}\right) & \text{if } \max_k(\phi_k(S)) < \phi_i(s) \text{ for any } i \\ 1 - \frac{m(s)}{m(S)} & \text{otherwise.} \end{cases} \quad F(s) = \begin{cases} \min_i \left(1 - \frac{\phi_i}{\phi_i(S)}\right) & \text{if } \phi_i(S) < \phi_i(s) \text{ for any } i \\ 1 - \frac{m(s)}{m(S)} & \text{otherwise.} \end{cases}$

Beat the full (heaviest) shield Beat the full (heaviest) shield at its worst detector

at each detector

Results for "Max Flux"

Fitness = .75
Cells = 64
Passed max flux
Scored on mass
16x16 grid
Tested at most 10,620 shields Fitness = .96
Cells = 10
Passed max flux
Scored on mass
2x2 -> 4x4 -> 8x8 -> 16x16 grid
Tested at most 10,600 shields

 1.16×10^{77} Possible Shields

Results for "Max Flux" 32x32 GA MGGA

Fitness = .5
Cells = 509
Passed max flux
Scored on mass
Tested at most 15,000 shields

Fitness = .956
Cells = 45
Passed max flux
Scored on mass
Tested at most 13,000 shields

 1.8×10^{308} Possible Shields

16x16 vs. 32x32

16x16

32x32

Both have a fitness over 0.9
Both passed flux test
Very similar geometry

Results for ByLocation GA MGGA

Fitness = .45

- Cells = 140
- Passed flux by location test
- Scored on mass
- Tested at most10,620 shields

Fitness = .81
Cells = 47
Passed flux by location test
Scored on mass
Tested at most 10,600 shields

1.16 x 1077 Possible Shields

Non-Equal Mass Rings GA MGGA

Fitness = 0.572
Passed flux test
Scored on mass
Tested at most 10,620 shields Fitness = 0.9675
Passed flux test
Scored on mass
Tested at most 10,600 shields

MGGA opened up interesting scatter paths

 1.16×10^{77} Possibles

How do we shield radiation workers and first responders?

Designing A Gamma Shield

- McCaffrey, et.al. showed that low-Z/ high-Z layering can beat an equal mass lead shield (2009)
- Can MGGA organize layers to take advantage of atomic physics?

 $F(s) = \begin{cases} 1 - (D(s) \times 1000) & \text{if } m(s) < m(S) \\ -\frac{m(s)}{m(S)} & \text{otherwise.} \end{cases}$

Low Energy Setup

- Consider a shield of width T separated into layers
- Place a mono-energetic gamma source on one side
- Place water on the other side, and tally the dose at various depths

Slab Geometry Results

- <20,000 shields GA</p>
- <17,500 shields MGGA</p>
- 16 layers for GA
- 4,8 and 16 layers for MGGA
- 3.32 x 10¹³ possible shields

GA 50kev

SRC

SRC

Sn

Sb

Sn

W

Sn

Sn

W

Sb

W

Sb

Sn

Energy	Fitness	Reduction %	Algorithm
50 kev	0.99996	79.69	GA
50 kev	0.99994	67.7	MGGA
75 kev	0.99905	83.54	GA
75 kev	0.99908	84.09	MGGA
100 kev	0.9973	31.02	GA
100 kev	0.9967	15.57	MGGA
150 kev	0.9796	1.313	GA
150 kev	0.9793	0.158	MGGA
200 kev	0.9459	1.319	GA
200 kev	0.9453	0.203	MGGA

Sn

Sb

Sb

Sn

Bi

Sn.

Pb

E.

MGGA 75kev

Why isn't MGGA Winning?

There aren't a lot of complex building blocks to carry through phases

Later phases get locked into locally good solutions

GA

MGGA

SRC					S	n			S	'n						
SRC				S	n	S	n	S	n	S	'n	S	n	S	n	
SRC			 	Sn	Sn	Sn	Sn	AI	Sn	Sn	Sn	Sn	Bi	Sn	Bi	

The ORNL Phantom

- Consider a realistic human phantom
- Wrap the torso, head and groin with a shield
- Calculate a total body dose (minus the legs)
- So Can a layered shield beat a lead shield of equal mass?

 $F(s) = \begin{cases} 1 - D(s) & \text{if } m(s) < m(S) \\ -\frac{m(s)}{m(S)} & \text{otherwise} \end{cases}$

Results on the ORNL Phantom

16 layers for GA
4, 8, 16 layers for MGGA
MGGA tested 22,500 shields

GA tested 20,000 shields

Energy	Reduction %	Algorithm
50 kev	11.368	MGGA
50 kev	10.98	GA
75 kev	66.89	MGGA
75 kev	65.4	GA
100 kev	27.62	MGGA
100 kev	22.65	GA

MGGA 75kev

 2.65×10^{30} Possible Shields

Can We Shape Fluence?

Designing A Bow-Tie Filter

Filters are often used to shape radiation (Mail 2009)
Can MGGA shape the profile of scattered to total flux on a target plane?

 $F(s) = \begin{cases} 1 - 1000 \times \text{count of zero tallies} & \text{if any tallies are zero} \\ 1 - \frac{1}{N} \sum_{i=0}^{N} \left(\frac{\phi_s(i)}{\phi_t(i)} - \langle \frac{\phi_s}{\phi_t} \rangle \right)^2 & \text{otherwise} \end{cases}$

Results With Aluminum

Scatter

Total

Detector Radius

																←						<u>4(</u>	<u>:m</u>	1						*	1	
AI	Al	Al	AI	AI	AI	AI	Al	AI	AI	Al	AI	AI	Al	Al		Al	Al	AI	AI	AI	AI	AI	AI	Al	Al	AI	AI	Al	Al	AI		
AI	Al	AI	AI	AI	AI	AI	Al	AI	AI	Al	AI	AI	Al	AI		Al	Al	AI	AI	AI	AI	AI	Al	Al	AI	AI	AI	Al	Al	AI		
AI	Al	Al	AI	AI	AI	AI	Al	AI	AI	Al	Al	AI	Al	Al		Al	Al	AI	AI	AI	AI	AI	Al	Al	Al	AI	AI	Al	Al	AI		
AI	Al	Al	AI	AI	AI	AI	Al	AI	AI	Al		AI	Al				Al	AI		AI	AI	AI	Al	Al	Al	AI	AI	Al	Al	AI		
AI	Al	Al	AI	AI	AI	AI	Al	AI	AI	Al	Al	AI	Al				Al	AI	AI	AI	AI	AI	Al	Al	Al	AI	AI	Al	Al	AI		
AI	Al	AI	AI	AI	AI	AI	Al	AI	AI	Al	Al	AI	Al				Al	AI	AI	AI	AI	AI	Al	Al	Al	AI	AI	Al	Al	AI		
AI	Al	Al	AI	AI	AI	AI	Al	AI	AI	Al	Al	AI	Al				Al	AI	AI	AI	AI	AI	Al	Al	Al	AI	AI	Al	Al	AI		
AI	Al	Al	AI	AI	AI	AI	Al	AI	AI	Al	Al	AI	Al				Al	AI	AI	AI	AI	AI	Al	Al	Al	AI	AI	Al	Al	AI		200
AI	Al	AI	AI	AI	AI	AI	Al	AI	AI	AI	Al	AI	Al				AI	AI	AI	AI	AI	AI	AI	Al	Al	AI	AI	Al	AI	AI		2011
AI	Al	AI	AI	AI	AI		Al	AI	AI	AI	AI	AI	Al				AI	AI	AI	AI	AI	AI	AI		AI	AI	AI	AI	AI	AI		
AI	Al	AI	AI	AI	AI	AI	Al	AI	AI	Al	AI	AI	Al				Al	AI	AI	AI	AI	AI	Al	Al	Al	AI	AI	Al	AI	AI		
AI	Al	Al	AI	AI	AI	AI	Al	AI	AI	Al	Al	AI	Al				Al	AI	AI	AI	AI	AI	Al	Al	Al	AI	AI	Al	Al	AI		
AI	Al	AI	AI	AI	AI	AI	Al	AI	AI	AI	Al	AI	Al				AI	AI	AI	AI	AI	AI	AI	Al	AI	AI	AI	Al	Al	AI		
AI	Al	AI	AI	Al				Al	AI	AI	AI	AI	AI	AI	AI	AI	AI	AI	AI	AI	AI											
AI	Al	AI	AI	AI	AI	AI	Al	AI	AI	Al	AI	AI						AI	AI	AI	AI	AI	Al	Al	Al	AI	AI	Al	Al	AI		
AI	Al	AI	AI	AI	AI	AI	Al	AI	AI	Al	AI	AI						Al	AI	AI	AI	AI	Al	Al	Al	AI	AI	Al	Al	AI		

Results at 120kev

GA

AI	Ti	Al	Ti	Ti	Ti	Ti			AI	AI			Ti	Ti		Ti	Ti			AI	Al			Ti	Ti	Ti	Ti	AI	Ti	AI
Ti	AI	Ti	AI	Ti		AI	AI	Ti	AI	Ti	AI	AI	Ti	Ti		Ti	Ti	Al	AI	Ti	Al	Ti	AI	AI		Ħ	AI	Ti	AI	Ti
Ti	AI		Ti	Ti	Ti	Al	Ti	Ti	Al	Al	Al	AI	Ti	Ti		Ti	Ti	Al	AI	AI	Al	Ti	Ti	AI	Ti	Fi	Ti		AI	Ti
Ti		AI	AI	Al		Ti	Ti			Al	AI	Ti	Ti	Al		Al	Ti	Ti	AI	AI			Ti	Ti		AI	AI	AI		Ti
AI	Ti	Al	Al		AI	Ti	AI	AI	Ti			Ti	Ti	Al		AI	Ti	Ti			Ti	Al	Al	Ti	Al		AI	Al	Ti	AI
Ti	AI		AI		Al	AI	Ti	AI		Al	AI	Ti	Ti				Ti	Ti	AI	AI		AI	Ti	AI	AI		AI		AI	Ti
Ti	AI	Al	Ti	Al	Ti	Ti	Ti	AI	Al	Ti	Al	Ħ	Ti	Al		Al	E	Ti	AI	Ti	Al	Al	Ti	Ti	Ti	AI	Ē	Al	AI	Ti
Ti	AI	AI		Ti	Ti	Ti					Ti	Ti	Ti				Ti	Ti	Ti					Ti	Ti	Ti		AI	AI	Ti
Ti	AI		AI	Ti	Ti	Ti		Ti	Al	Al	Ti	Ti	Al				AI	Ti	Ti	AI	Al	Ti		Ti	Ti	Ti	Al		AI	Ti
AI	AI	Al		Ti	Al	Al		AI	Al	Ti	Ti	Ti	Al	AI		AI	AI	Ti	Ti	Ti	Al	Al		Al	Al	Ti		Al	AI	AI
AI	AI		AI	Ti		AI			AI		Ti	Ti	Ti				Ħ	Ti	Ti		Al			AI		Ħ	AI		AI	AI
AI		AI		Ti	Ti		Al	AI	Al	Ti	Ti	Ti						Ti	Ti	Ti	Al	AI	AI		Ti	Ti		AI		AI
AI	AI		AI	Ti	Al				Al	Ti	Ti	Ti						Ti	Ti	Ti	Al				AI	Ti	Al		AI	AI
				Ti	Al		Ti		Al	Ti	Ti	Ti	Al				AI	Ti	Ti	Ti	Al		Ti		Al	Ti				
Ti	AI	Ti		Al					AI	Ti	Ti	AI	AI				AI	Al	Ti	Ti	Al					AI		Ti	AI	Ti
		Ti					AI	AI	Ti	Ti	Ti								Ti	Ti	Ti	AI	AI					Ti		

Fitness = 0.996

- @ 22,500 tested
- @ 16x16 grid

1.4 x 10¹²² Possible Shields © Fitness = 0.997

MGGA

- @ 22,500 tested
- @ 4x4, 8x8, 16x16 grid

Future Work

Look into different ways to tune MGGA

- Selection during phase translations
- Adding diversity during translations
- Using different GA parameters at each phase (tournament selection, mutation rate)
- Investigate using physical error in fitness functions
- Simulate larger, more realistic geometries, using more computing resources

Summary

MGGA beat GA on fitness in most cases
MGGA beat GA on time in all cases
MGGA provided interesting design paths
Detailed neutron scattering paths
Lightweight, layered gamma shield
Manufacturable multi-element bow-tie filter
MGGA provides a powerful investigative

design tool

Thank You

*This work was supported in part by DTRA grant number HDTRA1-08-1-0043

Backup Slides

Why LiH?

Lightweight
Hydrogen slows fast neutrons
Li helps absorb slow neutrons
Minimal gamma
Common choice in the literature

High Z – Low Z 50 kev

100 kev

Ti-Al Cross sections

